Partial wave decomposition of $2\pi-1\pi$ 3NF in χPT

H. Kamada1, E. Epelbaum2,3, A. Nogga,2 W. Glöckle4, U. G. Meißner2,3, H. Witała5, J. Golak5, R. Skibiński5,

1 Department of Physics, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan
2 Institute für Kernphysik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
3 Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) Universität Bonn, Nußallee 14-16, D-53115 Bonn, Germany
4 Institute für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany
5 M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30059, Kraków, Poland

Contact email: kamada@mns.kyutech.ac.jp

As the title of this workshop shows, the first introduction [1] of the three-nucleon force (3NF) was done 50 years ago. Although there are many representations of 3NF up to now, the Fujita-Miyazawa force [1] type of 3NF has been dominantly used in the Faddeev three-body equation. Comparing the data [2–4] of pd scattering in the intermediate energies there are some agreements and disagreements in the cases whether the 3NF is switched on or off. For a long time one expects another 3NF to solve the disagreements. Not only 2π exchange type of 3NF but $\pi-\rho$ and $\rho-\rho$ was introduced, however, the calculation of the 3NF was applied to only the bound state. The application to the scattering state we need some techniques, especially, the partial wave decomposition [5]. The 3NF generated by the chiral perturbation theory (χPT) [6] are consistently reproduced under their unique Lagrangian. The Fujita-Miyazawa 3NF already appears in the Next to Next Leading Order (NNLO) of χPT. Furthermore, $2\pi-1\pi$ diagram of N3LO are in preparing [7]. In my oral it will be shown how to work out the partial wave decomposition for the $2\pi-1\pi$ type of 3NF.