Application of chiral NN and NNN interactions to the 4He photo-disintegration

Sofia Quaglioni1, Petr Navrátil1

1 Lawrence Livermore National Laboratory, L-414, P.O. Box 808, Livermore, CA 94551, USA

Contact email: quaglioni1@llnl.gov

We present an ab initio calculation [1] of the 4He total photo-absorption cross section using two- (NN) plus three-nucleon (NNN) interactions based upon chiral effective field theory (χEFT) [2]: the high quality NN potential at the fourth order (N3LO) in the χEFT expansion of Ref. [3], and the NNN interaction at the highest order presently available (N2LO) [4, 5]. The two low-energy constants of the NNN contact terms are constrained according to the preferred choice suggested in Ref. [6]. The microscopic treatment of the continuum problem is achieved by means of the Lorentz integral transform method [7], applied within the NCSM [8, 9] approach. Our results show a peak around the excitation energy of $\omega = 27.8$ MeV, with a cross section of 3 mb. The inclusion of the NNN force in the Hamiltonian induces a reduction of the peak at low energies and the enhancement of the high-energy tail of the cross section. We compare to calculations obtained using different interaction models and to representative experiments.

This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. Support from U.S. DOE/SC/NP (Work Proposal Number SCW0498) is acknowledged.